	24
	Chapter n

	n. XML-BASED Tools for Creating, MAPPING, and Transforming usability engineering requirements
	23

	Chapter
	n

	XML-BASED Tools for Creating, MAPPING, and Transforming usability engineering requirements

	

	Fei Huang, Jon Titus, Allan Wolinski, Kevin Schneider, Jim A. Carter

	University of Saskatchewan, Saskatoon, SK, Canada

Abstract:
This paper introduces a set of XML-based and XMI-based tools for creating usability engineering requirements and automatically transforming them into software engineering specifications. Each of these tools is data-driven and uses XML to maximize flexibility, accessibility and translatability. These tools are primarily intended for use by usability engineers to create usability engineering (UE) requirements, analyze accessibility issues, and automatically transform UI requirements into software engineering specifications. By transforming usability requirements into software engineering specifications, usability engineers can help software engineers design systems that satisfy the applicable usability requirements. Additionally these tools can be used by researchers investigating usability engineering methodologies.

Key words:
integration, requirements, software engineering, specifications, UML, unified modeling language, usability engineering, XMI, XML, XSD, extensible markup language, accessibility

1. Introduction

There is a need for unifying the user interface development methodologies of software engineers, usability engineers, and other computer professionals (Carter et. al., 2005). The integration of usability engineering and software engineering can also aid in the development of systems that are universally accessible (Savadis & Stephanidis, 2004).

This chapter describes research under way in USERLab at the University of Saskatchewan that deals with developing usability engineering methods and methodologies and integrating them with software engineering methodologies. In particular, this chapter discusses research integrating the USERLab’s Putting Usability First (PUF) methodology and the USERLab’s Common Access Profile (CAP) method with software engineering methodologies.

1.1 The Putting Usability First Methodology

The Putting Usability First Methodology (PUF) is a usability engineering methodology that attempts to balance usability concerns for both end users and the developers who create systems to serve them (Carter et. al, 2005). It can be used to support the iterative evolution of the requirements of five types of entities (scenarios, tasks, user groups, content chunks, and tools) throughout a systems development life cycle (possibilities identification, possibilities analysis, requirements analysis, design, construction, testing, and implementation). It can also be used as a means of creating usability requirements and integrating them with a software engineering development life cycle.

1.2 The Common Access Profile

The Common Access Profile provides a method for identifying and dealing with accessibility issues in a standardized manner across multiple platforms (Fourney & Carter, 2006; ISO, 2007). The CAPs of users, systems, and environments can be compared to determine the potential for systems and system components (including assistive technologies) to meet the unique accessibility needs of an individual user or of a group of users with different needs.
1.3 Requirements, Tools, and Guidance

While it is important to develop methodologies and methods such as PUF and CAP, it is even more important to ensure that they can have an impact on actual software development. This involves recognition of the key role in project management played by software engineers. If usability engineering methods do not integrate with software engineering methodologies, they may have little impact on actual development.

Software engineering tends to focus on "functional requirements" which are easy to translate into algorithms and data structures. This leaves the need to identify, integrate and meet other, so-called "non-functional" requirements (Cortellessa & Pompei, 2004), throughout the development life cycle, including those typically addressed by usability engineering. Early identification and validation of these "non-functional" requirements is essential regardless of whether this is done by software engineers or other professionals who are more interested in these aspects of system analysis and design (Cysneiros & Leite, 2001; Jerome & Kazman, 2006). In addition to project specific usability requirements, usability requirements should consider the user needs that support accessibility (ISO/IEC JTC1 SWG-A, 2006). As well, products are increasingly required to be localized for particular populations and cultures (Jagne & Smith-Atakan, 2006).

There is a need for development tools to better support usability engineering (Carter, 1999) and requirements engineering (Zhang & Eberlein, 2003) and their integration with software engineering. The integration of the results and activities of usability engineering and software engineering has been hampered by the different methods, notations, and tools that each specialty has developed (Seffah & Metzker, 2004). Metamodels for development methodologies (ISO, 2006c) are being developed to facilitate the comparison, integration, and customization of development methodologies. Various researchers (Cortellessa & Pompei, 2004; Cysneiros & Leite, 2001; Jerome & Kazman, 2006) have focused on the integration of usability engineering (UE) and other non-functional requirements into the set of UML diagrams that are used by software engineering (SE).

XML Metadata Interchange (XMI) provides a means "to enable easy interchange of metadata between application development lifecycle tools" (ISO/IEC, 2005). UML 2.1.1 XMI (Object Management Group, 2006b), which defines the content of an XML document that XMI creates, can be used to determine whether the UML metamodel data satisfies all of the UML metamodel’s semantics constraints.

XML is used to represent the XMI interchange format and XML provides a good basis for recording specifications, for transforming specifications between methodologies, and for analyzing specifications to provide appropriate design guidance (Gaffar et. al., 2005, ISO/IEC, 2005). Nowadays, most UML CASE tools support XMI. Open source UML tools, such as ArgoUML (the University of California. 2007), automatically generate XML files from UML diagrams, including: use case diagrams, class diagrams, and collaboration diagrams. The XML code in this paper is produced by ArgoUML.
There is a growing body of guidance developed by ISO TC159/SC 4 Ergonomics of Human-System Interaction and ISO/IEC JTC1/SC35 User Interfaces. There is also increasing international agreement in terms of high level guidance (ISO, 2006a), and detailed guidance (ISO, 2006b) for making systems accessible. As this body of guidance grows, there is an increasing need for development tools to aid developers in identifying and applying this guidance (Carter, 1999). Tools can be developed to analyze XML based requirements to identify guidance from applicable international standards; to identify accessibility issues (ISO/IEC, 2007); to extract, analyze user interface design patterns (Gaffar et. al., 2005); and to identify architecturally-sensitive usability scenarios (Adams et. al., 2006).

2. TOOLSET Overview

The primary goal of this research is to investigate and develop accessible methods, techniques, and tools for supporting development of accessible software systems. This is being accomplished by developing and using a data-driven workbench of tools for use by researchers and developers of interactive systems. XML provides a common basis for defining schema to support different development methodologies (including the PUF methodology and the CAP method).

[image: image2.jpg]Usability Engineering
Development Tool (UEDT)

Produce Project
Spec Reports and
Queries

Update Project
Spees

Tool (MAT)

Project Setup
Project Spec and
Metadata Administration

Organization/
Methodology
Metadata Setup

7Y

Organization/
Methodology
Metadata

Mapping and i
Translation Tools i
(MaTT) v i

Accessibility Specification Mapping between
Analysis and e different ;
Reports Methodologies |
UML Tools ‘
(external) i
UML based on Plﬁa‘:p%"' ‘
PUF Specs (Metadata) ‘

Specification

Analysis ‘

[image: image1]
Figure 1. The structure of the USERLab toolset and its databases.

Figure 1 shows the architecture of the main tools in the USERLab workbench. Basic support for UE will be provided by a combination of a Methodology Administration Tool (that is used to specify the schema used to record requirements for a given methodology or method) and a UE Development Tool (that uses these schema to capture project specific requirements). This project is unique in that it separates out methodology administration (specification and modification of the record schema to support a given methodology) from using the methodology to capture requirements and to perform other life cycle support processes. The resulting requirements and schema provide inputs to three sets of advanced tools: an Access Analysis Tool, a set of Mapping and Translation Tools, and a set of Specification Analysis Tools. The requirements specified in the analysis of the different tools within this project can be used as the basis for an initial evaluation of the usability of each of these advanced tools. The results of these evaluations will be used to identify improvements to one or more of the tools and their associated methods.

2.1 Methodology Administration

The Methodology Administration Tool (MAT) helps researchers and developers to investigate, develop, modify, and support various development methodologies without having to create separate development support tools for each one.

The MAT assists in creating a master schema for the requirements and specifications of multiple development methodologies and methods that will be used by a single UE Development Tool (Wolinski, 2005; Titus, 2006). The unique features of the MAT are discussed in section 3 of this paper.

The MAT supports both defining a master version of individual methodologies and developing customized versions of methodologies to meet the needs of individual projects (including combining records from different methodologies and methods, such as PUF and CAP). This facilitates the investigation of alternate usability engineering methodologies and variations of these. It also demonstrates a practical method of achieving cultural and linguistic adaptability by storing all headings and labels in a database, designed so that headings and labels in different languages can be substituted for each other.

2.2 Usability Engineering Development

The UE Development Tool (UEDT) helps usability engineers to create, manage, and query UE specifications at various stages within a project development life cycle. The UEDT is a flexible tool driven by schemata produced by the MAT. This flexibility allows the UEDT to be used in researching and applying various UE methodologies.

The features of the UEDT are designed to meet the usability and accessibility needs of developers, including developers with disabilities. Extensive navigation is provided directly between interlinked specification records and between specification records and various types of management reports. Each successive life cycle stage can involve adding more detailed information to existing information. The UEDT helps manage development activities by identifying which requirements have been completed by the usability engineer and which requirements have been approved by the user at each stage of the life cycle.

The UEDT provides a means for prototyping different development methodologies and capturing UE requirements in a format that supports their analysis and their transformation into UML.

2.3 Analyzing Accessibility

The Access Analysis Tool (AAT) is used to compare CAPs of users, systems, system components (including assistive technologies), and their environments to identify issues that should be overcome to improve accessibility. It allows developers to consider possible configurations of assistive technologies that could eliminate or reduce accessibility obstacles.

The ATT (along with the previous two tools) supports accessibility assessment based on ISO/IEC 24756 (2007). The ATT can be used to identify access related issues in specific configurations of users, environments, and systems and can be used to help identify alternate configurations, including assistive technologies where necessary, that can reduce or eliminate these issues.

A CAP specific version of the UEDT will be produced as a stand alone tool to use in specifying CAPs, as defined in ISO/IEC 24756 (2007). It is expected that this may lead to the development of a registry of CAPs for various commercial hardware and software systems (including assistive technologies).

2.4 Translating UE Requirements into SE Specifications

The Mapping and Translation Tools (MaTTs) help integrate UE requirements into traditional SE (UML-based) specifications both in research and in development activities. They aid in defining the role and interactions of usability engineers within early stages of a development project. The MaTTs are usable with any methodologies that are XML based.

The MaTTs supports analyzing and comparing semantics of different requirement specification schema, and translating between the source schema and the target schema components (Huang, 2006). This allows usability engineering requirements to be used as a starting point for the project's software engineers. These tools are also intended to support research into the unification of various development methodologies and models, especially the unification of UE and SE approaches to development.

The Methodology Mapping Tool (MMT) takes two XML based specification schemas, such as the PUF XML schema and the UML XML schema, helps the researcher analyze and compare semantics of these structures, and outputs a set of rules for producing a set of mappings between the source schema and the target schema components. It supports single tag mapping and multiple tag mapping and the specification of the type of relationship for each mapping (exact, inclusion, and non-existing). The unique features of this mapping are discussed in section 4 of this paper.

The Methodology Translation Tool (MMT) uses information from the mapping tool to transform a usability requirement instance from the source XML schema (e.g. PUF) into an instance of a different (e.g. UML) target XML schema. There are four inputs to the transformation: (a) the project specifications database containing the source XML document (the UE methodology specific tags and data); (b) the project specifications metadata database containing the tag structure; (c) the target XMI schema; and, (d) the source to XMI mapping database. The inputs are transformed into a target XML document (e.g. a set of XMI records containing the PUF/CAP/other usability engineering specifications) and an enhanced XMI schema (e.g. a XMI schema containing the PUF/CAP/other usability engineering metadata). The tool creates both an improved XMI structure and initial requirements including the usability engineering requirements captured by the flexible UE Development tool. The requirements are used as a starting point for the project's software engineers. Unique features of this translation are discussed in section 5 of this chapter.

2.5 Analyzing UE Requirements and SE Specifications

The Specification Analysis Tools (SATs) analyze sets of UE / SE specifications, created by the UEDT or the MaTT, in terms of international standards and design patterns that can aid in developing systems to meet these usability and accessibility specifications. These tools support the development of a database of user interface design guidance (based on existing international standards and design patterns), the mapping of these standards and design patterns to different methodology schema components, and the use of the resulting information in analyzing specifications. The resulting design consistency can improve usability while reducing development costs.

The SATs will help to research possible UE contributions to the design of systems. In the long run, they will help to provide UE guidance to developers, regardless of whether the developers are usability engineers, software engineers, or other types of computer professionals.

3. USING XML TO STRUCTURE UE SPECIFICATIONS

The Methodology Administration Tool (MAT) provides a tool for a methodology developer or researcher to define metadata for a new or existing methodology and to create or modify requirement record templates to be used by this methodology. It uses XML to format and store methodology metadata and record template descriptions.

A methodology schema involves a methodology metadata record and zero, one or multiple requirement template records. The methodology developer can view and edit: all data associated with a methodology, the methodology metadata record alone, and/or individual requirement record templates

A methodology developer can create a new methodology schema either on its own or based on the schema from one or more methodologies already defined by the MAT. Copies may be made of a given methodology and modified to make them more suitable to the unique needs of individual projects. Each copy of an existing methodology is treated separately in the MAT database, to allow it to be modified without affecting the original methodology. Copies may also be made of individual requirement record templates from other methodologies at any time during the development of a new methodology. Each new copy is created as a unique record in the database and linked to the new methodology. This new copy is separate from the original and therefore changes to it are not reflected in the original record template

3.1 Methodology Metadata

MAT methodology metadata provides a starting point for defining methodology schema. It includes:

· a unique methodology name

· a unique abbreviated name

· a unique id (for internal use only)

· a short description of the methodology’s purpose

· a long description of the methodology’s purpose, components, operations

· linkages to associated record template records

3.2 Methodology Requirements

Methodologies generally involve one or more templates used to record requirements identified by a project developer who is following the methodology. The MAT provides a powerful means of creating templates to be used in the UEDT by project developers.

All MAT requirement template records (RTRs) include the following associated descriptive information:

· the name of the RTR

· a short description of the purpose of the RTR

· a full description of the purpose and use of the RTR

· the RTR's frozen (or not frozen) status

· record management information consisting of: its designer proposed level and its user accepted level

Once a methodology schema is completed and put into production for use in the UEDT, it is important to freeze changes to it (using a frozen status flag in the RTRs), so that all project requirement data remains consistently described by the associated methodology schema.

Record management information is designed to aid a project developer using the UEDT to manage the collection of requirements for a given project. Levels of user acceptance correspond to the hierarchy of sections in the requirement record template. The project developer can propose a section is ready for user acceptance. A user is then able to accept or reject the section. If a project developer modifies a user accepted section, the section level the user has approved is reduced as is the section level the project developer had proposed for approval.

3.3 Requirement Template Building Blocks

The MAT provides “building block” components for a methodology developer to define a new record template. These components include: section headers, hierarchal header items, linkage items, and question items.

[image: image3.png]Home

NAME: Task Record FROZEN: [
USER APPROVED: 5_Abrv v DEVELOPER PROPOSED:| §_Abrv (v

SHORT DESCRIPTION: Record's short description goss here

FULLDESCRIPTION: Record's full description goes here

Add Wew Section
SECTION HEADER: Section Tile goes here ABREV. [5_Abv
COMMENT: Section Description goes here
Delete This Section Tnsert New Ttem Below
1 Header Hierarchy Header's Tle goes here Delete This Ttem
Comment: Explain the purpose of this hisrarchy header Tnsert New Ttem Below
Move --> < Move
2 Linkage Linkage's text goes here Delete This Trem
Linkage Type: | NotSet | v|Record Type: | NotSet [v Min Occurs) Max Oceurs: nfnite Tnsert New Ttem Below
Comment: Explain the purpase of this inkage
Mov < Move
3 Question Question's text goes here Delete This Trem
Answer Type: | NotSet v Min Occurs 0 Max Occurs: Infinite Tnsert New Ttem Below
Comment: Explain the purpase of tis question
Move --> ove
Add Wew Section

[Clear Record | [Save Record | [Delete Record |

—

Figure 2. Creating a Requirement Template Record with the MAT.

These components are supported by a hierarchal system where section headers are the top level component. Hierarchal headers, linkages and questions belong to a ‘parent’ section header or item. The hierarchy is visually defined in the interface to the MAT by using indention and a numbering system. Figure 2 illustrates the use of MAT to develop a task requirement template for the PUF methodology.

Section header items include a section name and an abbreviation. The abbreviation must be unique to allow the project developer and user to use in proposing and approving the completeness of each section. A hierarchy header item only requires a header field for its name. A linkage item requires its name, type, the minimum and maximum number of times it may occur and its related record type. A question item is to include its question and answer type and its minimum and maximum occurrences. Each component includes a comment field that may be viewed by the project developer or user or that may be hidden by the developer from the user.

When a methodology developer wants to add a new item, he is given a choice of the type of item to be added. The new item is added directly below the previous item. The methodology developer is then able to indent the item if necessary to create the desired hierarchy. An item can not be indented more than one level under its parent. A developer can later decide to modify the hierarchy by moving an item out from its parent. If this is done, the moved item’s children (if any) should move with it. A methodology developer is also able to delete an item. In the case where an item has children, a developer is given the choice of whether its children should also be deleted or whether they should join the deleted item’s parent.

3.4 Using XML to Structure Task Requirement Records for PUF

The MAT can be used to produce an XML schema for PUF, CAP, and other usability engineering methodologies. An XML schema definition (XSD) shows a high-level abstract view of XML documents of that type which includes the XML tags and their interrelationships. XML schema can be used to create and use a type of XML document by imposing a set of rules and constraints on their structure and content.

Tables 1 and 2 provide partial examples of XML tags created using the MAT to define components of task requirement records for PUF. XML tag names come both from the methodology (e.g. "What" is used to identify a linkage to task requirement records in PUF) and from the type of structural element that is being used by the methodology (e.g. "linkquestion"). The overall structure of a requirement record is controlled using section numbers. Note that the MAT produces generic XML tags. The data of some of these tags actually acts as more specific tags.

	PUF Header
	PUF XML tags

	Identification Information

Type

Name

Description
	<TaskRecord>

 <section> <number>1</number>

 <sectionheading>Identification_Information</sectionheading>

 <question_simple> <number>1.1</number>

 <questionheading>type</questionheading>

<answer>task </answer>

</question_simple>

 <question_simple> <number>1.2</number>

 <questionheading>name</questionheading>

<answer>Answer data goes here </answer>

</question_simple>

 <question_multi> <number>1.3</number>

 <questionheading>description</questionheading>

 <answer>Answer data goes here</answer>

 <answer>for as many answers that there are</answer>

 </question_multi>

 </section>

Table 1. MAT-created XML for a PUF Task Record's

Identification Information Section.
	PUF Header
	PUF XML tags

	Linkage Information

Who

What

How

With which (content)

Scenarios
	 <section> <number>2</number>

 <sectionheading>Linkage_Information</sectionheading>

 <question_link > <number>2.1</number>

 <questionheading>who</questionheading>

 <questionText>Who performs this task?</questionText>

 <linkage>Linkage data goes here</linkage>

 <linkage>for as many linkages as there are. </linkage>

 </question_link>

 <question_link > <number>2.2</number>

 <questionheading>what</questionheading>

 <questionText>What subtasks does this task have?</questionText>

 <linkage>Linkage data goes here</linkage>

 <linkage>for as many linkages as there are. </linkage>

 </question_link>

 not shown in this example:

 how is done similar to structure for who

 with_which_content also is done similar to structure for who

 scenarios also is done similar to structure for who

 </section>

Table 2. MAT-created XML for a PUF Task Record's

Linkage Information Section.

While the complete PUF XML document contains a number of tags that are intended only for the use of a project developer using the UEDT, Table 3 contains a discussion of select XML tags that deal with requirements data and indicates how some of these tags and their data can be transformed into UML specifications.

	PUF XML tag
	Purpose

	<section>
	· allows mapping to consider one section at a time

· is not generally mapped into UML, but may help identify locations in UML where PUF data should be mapped to

	<number>
	· used to structure PUF, but not UML records

· is not mapped into UML

	<question_simple>
	· contains a single tag and piece of data to be mapped

	<question_multi>
	· contains a single tag and multiple pieces of data to be mapped

	<question_link >
	· contains a single tag and one or more links to additional data to be mapped

	<questionheading>
	· data to this generic tag provides semantics which can act as a tag for specific types of requirement data

· the data to this tag will be mapped

· this data may appear as a heading or subheading in a resulting UML diagram

	<questionText>
	· used only for UEDT

	<answer>
	· data to this generic tag contains requirement data

· the data to this tag will be mapped

	<linkage>
	· data to this generic tag provides linkages to other types of PUF records that contain related data

· the data to this tag will be mapped

	<sub_section>

(not illustrated in Tables 1 or 2)
	· primarily used to provide headings in UEDT for organizing multiple questions

· is not generally mapped into UML, but may help identify locations in UML where PUF data should be mapped to

· the data to this tag could be mapped if this data should appear as a heading or subheading in a resulting UML diagram

Table 3. PUF UML tags and their relationship to UML.

4. MAPPING BETWEEN XML-BASED UE AND SE SPECIFICATIONS

Mapping is the first of the two stage process that can transform UE specifications into SE requirements. Mapping only needs to be performed once for each pair of methodologies. It provides the logic to be used and reused in translating sets of project specific requirements from one methodology to another.

Mapping is required for any pair of methodologies that generally contain differences in their defining XML schema, even in portions of the XML schema that both represent the same requirements / specifications. Its main use is to guide the transformation of UE requirements into SE specifications. It can also be used to guide the transformation of the UE requirements of one project into UE requirements for another project, where the two projects have their own customized methodology records / schema.

The Methodology Mapping Tool (MMT) is used by a methodology developer to analyze and compare semantics of a (UE) source XML schema (e.g. the PUF XML schema – PUF XSD) and the semantics of a target XMI schema (e.g. UML XSD), as illustrated in Figure 3. The MMT then produces a set of mapping rules that can be used by the Methodology Translation Tool (MTT).

[image: image4.png]PUF
Methodology

—

FUF S schema
(PUF XSD)

Mapping
Tool (MMT)

SOl schema
(UML XSD)

PUF XSD to
UML XSD Mapping

Translation
Tool (MTT)

.

UML
Methodology

Figure 3. The Interactions of the Methodology Mapping Tool.
There are a number of different mapping needs that the MMT handles. Mapping needs to occur both on an entity to entity basis and on an attribute to attribute basis.

4.1 Entity and Attribute Mappings

Specifications typically consist of a large number of instances of relatively few types of specification records (templates). For example, PUF contains multiple user, task, content, tool, and scenario records. Likewise, UML consists of a limited number of entities (including: use cases, object classes, attributes, operations, actors) that are then diagrammed in one or more diagrams. Mapping on an entity to entity basis is essential to preserving the individual instances of each entity. Table 4 contains some high-level mappings of PUF record types to UML entities that were identified in Carter et. al. (2005).

	For every xxxx

identified in PUF …
	… there should be a yyyy
created in UML

	user
	actor

	task
	essential use case

	scenario
	use case

	content
	attribute

	tool
	operation

Table 4. Some High-level Mapping of Entities from PUF to UML.

Entities in most methodologies are expected to have unique names. As illustrated in Table 1, the Identification Information section of PUF record templates (created by MAT) identifies the type of PUF record and contains a question designed to allow project developers to name individual records. These names can be used to direct the mapped, as described in Table 5.

	PUF XML
	Desired Result of Mapping

	 <question_simple> <number>1.1</number>

 <questionheading>type</questionheading>

 <answer>task </answer>

 </question_simple>
	This requires mapping to (including the creation, where necessary) a UML actor record for each instance of a PUF task (type of) record.

	<question_simple> <number>1.2</number>

 <questionheading>name</questionheading>

 <answer>Answer data goes here </answer>

</question_simple>

	The name of the UML actor records will be taken from the answer to question 1.2 of the PUF task records.

If no UML actor record exists with that name, then it will have to be created.

Table 5. High-level Mapping of PUF Tasks to UML Actors.

The names of different types of specifications are also important when used as the answers to questions asking about links. For example PUF content and tools correspond to attributes and operations in UML classes. The relationship between specific content and tool records needs to be mapped to the specific relationship between specific attributes and operations.

Attribute to attribute mapping occurs within the entities selected by entity to entity mapping. Attribute to attribute mappings can involve the attribute being mapped: directly to an existing target attribute, to a part of an existing target attribute, or as a new target attribute.

Where an attribute maps directly to an existing target element (within UML), it needs to have its data placed in that corresponding (UML) element. For example, PUF task names map to name attributes in UML Use Case tags as illustrated in Table 6.

	PUF XML
	UML XML

	 (part of a PUF task record)

<question_simple> <number>1.2</number>

 <questionheading>name
 </questionheading>

 <answer> paying for ordered items using e-
 Commerce </answer> </question_simple>
<question_multi> <number>1.3</number>
 <questionheading>description

 </questionheading>

 <answer> paying for an order of items
 already selected and currently in the
 customer’s virtual shopping cart.
</answer>

 </question_multi>
	<UML:UseCase xmi.id="" name ="paying for ordered items using e-Commerce" isSpecification ="" isRoot="" isLeaf ="" isAbstract="">
…

<UML:eAnnotations> paying for an order of items already selected and currently in the customer’s virtual shopping cart. </UML:eAnnotations>
…
</UML:UseCase>

Table 6. Direct Attribute to Attribute Mapping of PUF to UML.

Where an attribute maps directly to part of an existing element (within UML), it needs to have its data placed in a sub-element of that corresponding (UML) element. For example, answers about what this task consists of in PUF task descriptions map to lower level Use Cases, as illustrated in Table 7.

Where an attribute does not correspond to an existing element (within UML), it needs to have its data placed at the appropriate location (within UML). For example, environmental data from PUF tasks needs to become a new type of constraint in UML, as illustrated in Table 8.

	PUF XML
	UML XML

	 (continuing from example in Table 6)

<question_link > <number>2.2</number> <questionheading>what</questionheading>

<questionText>What subtasks does this task
 have?</questionText>
<linkage> enquiring about order status </linkage>
<linkage> ordering selected items </linkage>

</question_link>
	 (as in Table 6 with additions)

<UML:UseCase xmi.id="" name =" paying for ordered items using e-Commerce’ isSpecification ="" isRoot="" isLeaf ="" isAbstract="">

…

<UML:ownedUseCase xmi.id ="N" name="enquiring about order status"> </UML: ownedUseCase >

<UML:ownedUseCase xmi.id = "M" name="ordering selected items">

</UML: ownedUseCase >
…
</UML:UseCase>

Table 7. Attribute to Attribute Part Mapping of PUF to UML.

	PUF XML
	UML XML

	 (continuing from example in Table 6)
<section> <number>2</number> <sectionheading>Environmental_Information

</sectionheading>

<question_multi> <number>3.1</number>
<questionheading>when

</questionheading>
<questionText>When is this task performed? </questionText>
<answer> performed after ordering selected
 items </answer>

</question_multi>

	<UML:Constraint xmi.id="" name ="">
<UML: constraintedElement> paying for ordered items using e-Commerce
</UML: constraintedElement>
 …
<PUF: when> performed after ordering selected items
 </PUF: when>

…

Table 8. Attribute to New Attribute Mapping of PUF to UML.
4.2 Multiplicity of Mappings

Because different methodologies can involve very different structures of requirements / specifications, there are many possible mapping situations that may arise. The MMT is intended to handle a wide range of possible mapping situations.

When dealing with relationships between two types of data, it is important to consider the multiplicity involved in the relationships. Multiplicity denotes the number of source and target entities (or attributes) involved in the relationship. The relationships between two types of methodologies can involve at least four possible types of multiplicity: one-to-one, one-to-many, many-to-one, and many-to-many. The examples in Tables 6 – 8 demonstrate a few of these multiplicity types when mapping UE requirements to SE specifications.

One-to-one mappings are relatively simple to specify and implement since there is no ambiguity as to what is being mapped. Table 4 specifies some one-to-one mappings between PUF records and UML diagrams. Table 6 specifies a one-to-one mapping between a PUF task name and a UML use case name. There may be many individual answers to some PUF questions, each of which requires a one-to-one mapping. For example, the answers to the “what” question in Table 7 reference two PUF tasks. Redundant one-to-one mappings would occur if we naively created one-to-one mappings between every PUF task reference and its corresponding UML use case. To avoid this, it is important to consider the semantics involved when creating the mapping rules. For example, when a PUF task is referenced in a “what” answer it denotes a structural relationship between tasks and this structural relationship needs to be maintained in the UML. A one-to-one mapping actually means that every instance of some type of data in the source maps to a unique instance of some other type of data in the target. Thus, the structural mapping of each answer to the question "what" is an example of a one-to-one mapping. The mapping of each line of a PUF task description to its own UML:eAnnotations is also an example of a one-to-one mapping.
Handling one-to-many mappings is also relatively straightforward, since the one-to-one mapping can be repeated many times, using the same source entity and identifying different target entities. While this increases the number of mapping rules, it does not increase the complexity of the mapping. Although no examples of one-to-many mappings occur for PUF and UML, the MMT can handle one-to-many mappings if instances of it are identified when relating other methodologies.

A many-to-one mapping is more complex to handle, since it can involve two different results, depending on whether the ‘many’ source entities are redundant or different. If two different source attributes are redundant (as in two different sources of task names both mapping to the name of a UML use case) then only a single one-to-one mapping is actually needed (unless, as discussed above, the different instances of task names have different purposes). When two sources containing different data are mapped to the same target attribute, it is important that both pieces of data are retained. It may also be useful to specify the ordering of how data from these two sources is placed into the target attribute. This ordering can easily be done within MMT, by selecting the exact location within target XML that any given mapping leads to.

Applying many-to-one mappings, can lead to a target specification produced by the MTT containing conflicting specifications. In order to help the user of the resulting specifications it may be useful that the source of each of the multiple requirements be identified as reference information along with the text. While this source information could clutter a UML diagram, the diagramming tool need not render this information as part of the diagram. It could, however, make this reference information available in interactive mode to the developer using the tool, either in a pop-up when scrolling over the associated specification or as a link into the UE requirements that have been translated as a basis for the UML diagram. However, if some reference information is to be included in the mapping, then all reference information should be included (since many-to-one mappings often start out as one-to-one mappings that are later added to by another one-to-one mapping to the same target attribute). In order to accommodate this information, the MMT can optionally create references for all source requirements using <UEref> tags in a manner similar to HTML <href> tags.

Many-to-many mappings can often be separated into sets of one-to-one, one-to-many and/or many-to-one mappings. Since no examples of many-to-many mappings have been identified that cannot be separated, the MMT does not provide support for many-to-many mappings.

5. tRANSLATING BETWEEN XML-BASED UE REQUIREMENTS INTO SE SPECIFICATIONS

Translation makes use of mapping information to automatically transform UE specifications into SE requirements. The Methodology Translation Tool (MTT) is used by a project developer (either a usability engineer or a software engineer) to translate UE project data using the source XML schema (e.g. the PUF XML schema – PUF XSD), the target XMI schema (e.g. UML XSD), and the mapping between these schema (e.g. the mapping of PUF to UML). The result of the mapping is both a version of the data that can be used by the target methodology (e.g. UML-PUF data) and an enhanced target XMI schema that describes how this data should be treated by the target methodology (e.g. PUF augmented XMI schema). This enhanced schema is necessary in order to explain how to interpret any new tags that have been added to accommodate attributes from the source methodology that did not directly translate into attributes of the target methodology. These interactions involving the MMT are illustrated in Figure 4.

[image: image5.png][Fource XML schemal

(Source XSD)

Source data
(Source XML)

Mapping
Tool (MMT)

Source 5D 1o
Target XSD

Mapping

Target XM scherma
(Target XSD)

Y

Targel Data
el

Tntegration
Tool (ITT)
N

Enbanced 30 Schema

(Enhanced X3D)

Enfanced Targel ala
()

Figure 4. Basic Interactions of the Methodology Mapping Tool.
5.1 Adding Integration to Translation

The current MTT is designed to be used to translate PUF (UE) requirements that have been obtained at the start of a project into UML specifications that can be used as a starting point for software engineers developing a project. It is desirable to enhance the capabilities of the MTT so that it can be used to integrate UE requirements throughout the development life cycle with various types of pre-existing data.

The current MTT does not have to deal with any pre-existing UML data. It creates new sets of SE specifications (UML-PUF data), involving UML tags, UML-PUF tags, and PUF data inserted within these tags. It also creates a new PUF augmented XMI schema that describes how to use these tags. Figure 5 illustrates and integration and translation tool (ITT) that could be used to deal with all combinations of pre-existing XML-based requirements and specifications.

[image: image6.png]PUF
Methodology

PUF
Development
Tool (VEDT)

FUF XML scherna|
(PUF XSD)

FUF dala
(PUF XML)

R schema UML
Mapping
> “ «
Tool (MMT) (UML XSD) Methodology
FUF %50 o
UML XSD Mapping
FUF augrented
XMI schema
Transtation - T uML
Tool (MTT) CRLPUF @] ool > Models

can

Figure 5. An Integration and Translation Tool.
There are two main situations where integration of UE requirements with existing SE specifications could occur: where only UML data exists and where UML-PUF data exists.

Both situations need to rely on matching high level entity names in source and target data. For integration to be effective, UE's and SE's need to use a shared set of entity names (e.g. shared names for UE "users" and SE "actors"). Otherwise, the target data will contain multiple records, that each partially describes some entities. While the MTT provides automatic translation, it is likely that an ITT will require some level of developer interaction to ensure that these names are properly mapped.

UML data can be expected to already exist where UE is not the only activity done at the start of a project. Although Carter et. al. (2005) advocate having UE create the initial set of requirements for SE, as a means of getting the value of UE accepted in project, this is not a usual occurrence in current projects. Thus, it is important that the enhanced ITT operations support the insertion of UE requirements in any point within the development life cycle.

Integrating UE source requirements into an existing set of SE target specifications works like many-to-one mapping, in that it is based on whether or not a suitable target tag exists. Integration starts with creating an enhanced target XMI schema as is done when target specifications do not already exist (e.g. from a source (PUF) XML schema and a target (XMI) schema). Integration then copies existing target (e.g. UML) data to form the basis of the enhanced target data. The final, and most complex integration operation involves using this enhanced target data to determine the appropriate entities and appropriate locations within these entities for adding new (e.g. UML-PUF) tags and new source (e.g. PUF) data to the enhanced target data.

Once the target XMI document involves both UE and SE data, adding further UE source data becomes a more complicated operation. While iteration of both UE and SE data is important, it is likely that at this point the combined data is under the control of SE's using tools that focus on adding SE related data.

The previously existing enhanced target XMI schema now becomes the target XMI schema used to create a new enhanced target schema. This target XMI schema may have most or all of the UE enhancements it already needs to accommodate new UE source data. However, there may be the need to be some enhancements to accommodate source XML that was not needed in previously translation and integrations.

Likewise, the existing enhanced target data now becomes the target data used with the source data, the schemas, and mapping rules to create a new set of enhanced target data. Again, this may contain most of the data found in the source data (which has been iterated by the UE).

In order to accommodate new UE data, integration will have to compare the new set of UE source data with existing UE data in the set of enhanced target data. There are two possible types of source data that require different types of processing: partial source data and iterated source data.

UE requirements should not need to be complete sets of requirements that are merged together before being used as source data. Large projects may be divided in separate subprojects that each has its own set of requirements. When dealing with partial requirements, integration should only process additions to the existing target data (making use of common data that already exists in both the target and source data).

Iterated source data contains the complete set of current UE requirements, and as such may require additions, modifications, and even deletions to this target data. Given the destructive nature of modifications and deletions, processing iterated source data should not be fully automated.

5.2 Visualizing and Working with the Results

The MTT currently uses Carlson's (2003) hypermodel modeling tool to generate UML object models from existing XMI documents or UML-PUF XSD. The generated UML object model showcases the structure of the XMI files using objects, attributes, operations, and relationships. To many people, a concise UML class diagram is the best way to get an overview of XML vocabulary models, which are most frequently published using the W3C XML Schema language (Carlson, 2001).
While the hypermodel tool does not meet the needs of integrating all UE requirements into SE specification and development, it does provide a proof of concept for out approach. However, it does not yet support diagram interchange, making exchanging files between UML modeling tools using XMI rarely possible. It is anticipated that in the future, more powerful UML tools will make use of XMI based specifications. XMI has been adopted as the format for UML model interchange.

To address XMI's deficiency in modeling graphical information, UML 2.0 Diagram Interchange (Object Management Group, 2006a) extends the UML XMI format by allowing graphical elements to be expressed in an XMI representation of geometrical concepts such as node, edge and connector. UML 2.0 Diagram Interchange allows the exchange of UML models with graphical diagrams via XMI. It supports presenting UML diagrams within a browser using SVG. To do so, EXtensible Stylesheet Language Transformations (XSLT) is adopted to transform the XML graphical elements into SVG format so that SVG compliant tools can display the UML diagrams.

6. CONCLUSION

In this chapter we introduced research under way that deals with developing usability engineering methods and methodologies, especially the PUF methodology and the CAP method. We described a set of XML-based and XMI-based tools for creating, mapping, transforming (translating and integrating) sets of UE requirements and SE specifications. These tools can be used to better integrate usability engineering within software engineering controlled development projects, and to help develop accessible software systems. We also recognize a need for improvements to the SE tools that make use of XMI-based specifications, in order for this integration to be fully accomplished.

REFERENCES:

Adams, R.J., L.Bass, and B.E. John, 2006. Experience with using general usability scenarios on the software architecture of a collaborative system, in A. Seffah, J. Guliksen, and M.D. Desmarais, (eds.), Human-Centered Software Engineering – Integrating Usability in the Development Process, Klewer/Springer, pp. 87-110.

Carlson, D., 2001. Modeling XML applications with UML : practical e-business applications, Addison-Wesley, Boston, MA.

Carlson, David , 2003. http://www.xmlmodeling.com/

Carter, J., 1999. Incorporating standards and guidelines in an approach that balances usability concerns for developers and end users”, Interacting With Computers, 12:179-206.

Carter, J., J. Liu, K. Schneider, and D. Fourney, 2005. “Transforming Usability Requirements into Software Specifications”, in A. Seffah, J. Guliksen, and M.D. Desmarais, Human-Centered Software Engineering – Integrating Usability in the Development Process, Klewer/Springer, pp. 145-167.

Cortellessa, V.& A. Pompei, 2004. Towards a UML profile for QoS: a contribution in the reliability domain, Proc. Fourth International Workshop on Software and Performance (WOSP-04), Redwood City, CA., pp. 197-206.

Cysneiros, L. M. & J. C. Ss do Prado Leite, 2001.Using UML to reflect non-functional requirements, Proc. 2001 Conference of the Center for Advanced Studies on Collaborative Research, IBM Center for Advanced Studies, Toronto, Canada.

Fourney, D. & J. Carter, 2006. A standard method of profiling the accessibility needs of computer users with vision and hearing impairments, Proc. CVHI 2006 Conference and Workshop on Assistive Technologies for Vision and Hearing Impairment, EURO-ASSIST-VHI-4, Kufstein, Austria, July, 6 pages.

Gaffar, A., A. Seffah & J.A. Van der Poll, 2005. HCI pattern semantics in XML: a pragmatic approach, Proc. 2005 Workshop on Human and social factors of software engineering, ACM, pp. 1-7.
Huang, F., 2006. Method for translating and linking xml-based specifications between development methodologies, Proc. 2006 Graduate Symposium, Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, http://www.cs.usask.ca/research/seminars/grad_sym/papers/FH-880.pdf, 10 pages.

ISO, 2006a. ISO DIS 9241-20 Ergonomics of human-system interaction – Accessibility guidelines for information/ communication technology (ICT) equipment and services, 22 p.

ISO, 2006b. ISO DIS 9241-171 Ergonomics of human-system interaction – Guidance on software accessibility, 83 pages.

ISO, 2006c. ISO FDIS 24744 Software engineering - Metamodel for development methodologies, 78 pages.

ISO/IEC, 2005. ISO/IEC PAS 19503 Information technology – XML metadata interchange specification,116 pages.

ISO/IEC, 2007. ISO/IEC FDIS 24756 Information technology – Framework for specifying a common access profile (CAP) of needs and capabilities of users, systems, and their environments, 30 pages.

ISO/IEC JTC1 SWG-A Special Working Group on Accessibility, 2006. User Needs Summary Version 1.0, JTC 1 SWG-A document N 212.

Jagne, J. & A.S.G. Smith-Atakan, 2006. Cross-cultural interface design strategy, Universal Access in the Information Society, online-first version, DOI 10.1007/s10209-006-0048-6, 7 pages.

Jerome, B. & R. Kazman, 2006. Surveying the solitudes: An investigation into the relationships between human computer interaction and software engineering in practice, in A. Seffah, J. Guliksen, and M.D. Desmarais, (eds.) Human-Centered Software Engineering – Integrating Usability in the Development Process, Klewer/Springer, pp. 59-70.

Object Management Group, 2006a. Diagram Interchange, v1.0, http://www.omg.org/ technology/documents/formal/ diagram.htm

Object Management Group, 2006b. UML 2.1 XSD files http://www.omg.org/cgi-bin/doc?ptc/2006-04-05
Savadis, A. & Stephanidis, C., 2004. Unified user interface development: the software engineering of universally accessible interactions, Universal Access in the Information Society, 3:165-193.

Seffah, A. & E. Metzker, 2004. The Obstacles and Myths of Usability and Software Engineering, Communications of the ACM, Dec. 2004, 47:12 pp. 71-76.

Titus, J., 2006. Building an Administration CASE Tool for CASE Tools, Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, unpublished report, 13 pages.

University of California, 2007. http://argouml.tigris.org/features.html

Wolinski, A., 2005. Developing a CASE Tool for the Putting Usability First Methodology Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, unpublished report, 17 pages.

Zhang, Q., & A. Eberlein, 2003. Architectural Design of An Intelligent Requirements Engineering Tool, Proc. 2003 Canadian Conference on Electrical and Computer Engineering, Vol.2, 1375-1378.

